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Abstract— Omnidirectional aerial vehicles (OMAVs) have
opened up a wide range of possibilities for inspection, naviga-
tion, and manipulation applications using drones. In this paper,
we introduce MorphEUS, a morphable co-axial quadrotor
that can control position and orientation independently with
high efficiency. It uses a paired servo motor mechanism for
each rotor arm, capable of pointing the vectored-thrust in
any arbitrary direction. As compared to the state-of-the-art
OMAVs, we achieve higher and more uniform force/torque
reachability with a smaller footprint and minimum thrust
cancellations. The overactuated nature of the system also results
in resiliency to rotor or servo-motor failures. The capabilities
of this quadrotor are particularly well-suited for contact-
based infrastructure inspection and close-proximity imaging
of complex geometries. In the accompanying control pipeline,
we present theoretical results for full controllability, almost-
everywhere exponential stability, and thrust-energy optimal-
ity. We evaluate our design and controller on high-fidelity
simulations showcasing the trajectory-tracking capabilities of
the vehicle during various tasks. Supplementary details and
experimental videos are available on the project webpage:
https://iral-morphable.github.io/.

I. INTRODUCTION

Multirotor aerial vehicles have seen tremendous applica-
tions in the real world, including industrial inspection [1],
search and rescue [2], and automated crop monitoring [3].
Standard multirotors suffer from limited maneuverability due
to their limited controllability: the control of their position
and orientation is coupled. This under-actuation heavily
compromises their deployment in contact-based inspections,
cluttered environments, and sensing and mapping applica-
tions. Omnidirectional multirotors (OMAVs) are aerial robots
that enhance maneuverability through over-actuation and,
in some cases, adaptive rotor configurations. This work
introduces a novel OMAV (see Fig. 1 for CAD design;
Fig. 11 for hardware prototype) capable of pointing the
thrust in arbitrary directions. As compared to the state-of-
the-art, we achieve higher and more uniform force/torque
reachability with a smaller footprint and minimum thrust
cancellations.

A. Related Work

As multirotor robotic platforms have become more ubiq-
uitous, there has been an increasing demand to extend their
maneuverability [4], [5]. Many works in the last decade have
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Fig. 1: CAD of the proposed morphable quadrotor actuated
with two additional degrees of freedom for each rotor,
providing 360◦ thrust-vectoring capabilities.

focused on developing fully-actuated multirotors that have
at least some decoupling of position and orientation. The
current literature of fully-actuated multirotors can be divided
into two broad classes: 1) variable-tilt multirotors, which can
actuate the orientation of their rotors during flight, and 2)
fixed-tilt multirotors, which cannot [6].

Fixed-tilt multirotors like [7]–[9] have rotors mounted at
fixed angles relative to the chassis. While this simplifies the
mechanical design, it often limits omnidirectional motion,
restricts versatility to specific tasks such as constrained
navigation, and reduces efficiency due to thrust cancellations.
The octorotor configuration in [10] achieves omnidirectional
motion using out-of-plane rotor placements enclosed inside a
cube. However, it suffers from inefficient force cancellations,
no payload capacity, and a large footprint.

Variable-tilt multirotors, such as [11], [12], enable syn-
chronized thrust vectoring for quadrotors, allowing more
versatile motion control. However, they face limitations in
achieving full force-torque reachability and often impose
strict orientation-tracking constraints. The Voliro hexacopter
[13], [14], utilizing six independent servos, is one of the
most advanced fully-actuated UAVs, offering omnidirectional
control. Despite its capabilities, it still faces challenges re-
lated to complex mechanics and limited efficiency in certain
maneuvers. Similarly, [15] proposes a fully omnidirectional
morphable octorotor with rotors that tilt synchronously. This
design offers enhanced flexibility but still struggles with
thrust inefficiencies and mechanical complexity.

B. Contributions

We present a novel variable-tilt co-axial quadrotor (Fig-
ure 1) and a control pipeline (Figure 2) that achieves a
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Fig. 2: Autonomous pipeline for the proposed variable-tilt
morphable quadrotor.

significantly higher level of maneuverability, dexterity, and
efficiency. This system builds on prior work by improving
omnidirectional flight capabilities while avoiding inefficient
thrust cancellations. To realize this, each of the rotor pairs
can be independently oriented using a pair of servo motors
(Figure 1). This allows for full 6-DoF control of position
and orientation. We prove that the proposed controller is
exponentially stable almost everywhere and energy-optimal
in terms of control allocation. In comparison to existing
literature, our contributions are on three broader aspects:

1) Dexterity and Full Omnidirectionality: Our quadrotor
can achieve all the force-torque realizations (within actuator
limits) in all directions. We prove the system is fully control-
lable and reachable, enabling our drone to traverse complex
and constrained geometries. This capability enhances dexter-
ity for inspection and manipulation tasks.

2) Aggressive Maneuverability: Unlike [15], our design
achieves omnidirectionality with a much smaller footprint,
resulting in higher maneuverability. The proposed geometric
controller, generalizing [16], has an almost 360◦ region
of attraction, enabling the vehicle to achieve exponential
stability at almost any configuration in SO(3).

3) High Efficiency with Resiliency: Despite being an
overactuated system, our control allocation scheme has zero
thrust cancellation for translation, compared to [14]. For
general force-torque commands, we propose an intuitive
and theoretically energy-optimal control allocation strategy.
Moreover, our quadrotor design employs co-axial rotors,
negating the rotor counter-torques and increasing thrust den-
sity. This design is robust for up to three rotor failures due
to independent thrust vectoring at each rotor arm.

Figure 2 shows the proposed control pipeline for our
quadrotor. We first discuss the dynamics of the quadrotor
based on the morphing rotors (actuators) in Section II.
There, we expand on the controllability and reachability
propositions. Next, in Section III, we present the generalized
geometric controller and the results on exponential stability.
The low-level control allocation scheme is elaborated in
Section IV. Finally, we validate our proposed system using
three high-fidelity simulation experiments that demonstrate
the 6-DoF tracking capabilities of the quadrotor in Section V.

II. MORPHABLE QUADROTOR DYNAMICS

In this section, we introduce the morphable quadrotor
dynamical model. The model consists of the translational

Fig. 3: Schematic of the drone highlighting coordinate frames
and servo angles.

dynamics and the rotational dynamics. We use W to denote
the world frame, B to denote the body-fixed frame, and P
to denote the propeller-fixed frame, shown in Figure 3. We
use a Z −X − Y Euler angle sequence for yaw ψ, roll ϕ,
and pitch θ to represent the orientation. By design, the body
to propeller frame transformation is characterized by two
angles α and β, as shown in Figure 3. Each of these angles
is controlled by a servo motor, providing additional actuator
commands alongside the propeller speeds.

A. Translational Dynamics

The translational dynamics of the quadrotor is given by

ṗ = v, mv̇ = mg +Rf , (1)

where p ∈ R3 and v ∈ R3 are position and velocity in
the world frame, m is the quadrotor mass, g ∈ R3 is the
acceleration due to gravity in the world frame, R ∈ SO(3)
is the rotation matrix from body to world frame, f ∈ R3 is
the body forces generated by propellers in the body frame.

Our design enables the generation of body forces f in any
direction and it can be expressed as

f =

4∑
i=1

(ctΩ
2
i )RPi/B(αi, βi)kPi = ctGΩ

◦2, (2)

where RPi/B(αi, βi) is the body-to-propeller rotation ma-
trix, Ω = [Ω1, Ω2, Ω3, Ω4]

⊤ is the angular rates of pro-
pellers, ct is the thrust coefficient, ◦ indicates the Hadamard
power, and G is a suitable matrix that maps angular rates of
propellers to body forces.

B. Rotational Dynamics

The rotational dynamics of the quadrotor is given by

Ṙ = R[ω]×, J ω̇ = −ω × Jω + τ , (3)

where ω ∈ R3 is the angular velocity in the body frame,
[·]× : R3 → R3×3 is the skew-symmetric matrix operator,
J ∈ R3×3 is the inertia matrix in the body frame, and τ ∈
R3 is the torque generated by propellers in the body frame.



Fig. 4: Force and torque envelopes, assuming that each arm
can apply a maximum thrust of 20N. Force envelope assumes
desired torque to be zero, and vice versa.

The first term in the angular velocity dynamics is the gyro-
scopic moment, due to the change in the angular momentum.
In the co-axial configuration, we constrain the rotational
speed of both the propellers on one arm to be equal. This
negates the drag force (angular) of each of the propellers due
to equal and opposite spinning co-axial propellers. Since the
net angular momentum of the individual pair is zero, it is
energy efficient to point the thrust in any direction, using
minimal effort from servo motors. The torque τ is only a
function of the individual thrust vectors, given by

τ =

4∑
i=1

(ctΩ
2
i )li × t̂i, (4)

where li = lixiB + liyjB + lizkB is the position vector of
the center of the i-th propeller with respect to center of mass
(COM) of the quadrotor in the body frame, t̂i ∈ R3 is the
individual thrust direction (unit vector) for each propeller
in the body frame. Mathematically, it is expressed by t̂i =
RPi/B(αi, βi)kPi

. Substituting these relations, the torque
exerted by the propellers is given by

τ =

4∑
i=1

(ctΩ
2
i )li ×RPi/B(αi, βi)kPi

= ctHΩ
◦2, (5)

where H is a suitable matrix that maps angular rates of
propellers to body moments.

Now we have a relation that gives both force and torque
applied on the quadrotor due to the angular velocities and
direction (based on αi, βi) of the propellers. Combining the
translation and rotational force equations, we have[

f
τ

]
= ct

[
G
H

]
Ω

◦2 = ctF (αi, βi)Ω
◦2. (6)

This is a forward dynamics relation that gives the force
and torque exerted due to control inputs αi, βi and Ωi.

In Section IV, we present the inverse relation, that is,
the control allocation to compute the values of αi, βi and
Ωi, for the desired reference force fd and torque τd. The
novel configuration of our quadrotor allows us to command
omnidirectional force and torque independently, subject only
to the saturation limit of the individual propeller pair.

C. Reachability and Controllability

We discuss that our vehicle is fully controllable and can
command omnidirectional force and torque independently.
We omit proofs, while highlighting the broad methodology.

Proposition 1 (Reachability). Given the drone dynam-
ics (1) and (3), force and torque relations (6) and suf-
ficient limits on rotor velocities, all the states x =
[x, y, z, ẋ, ẏ, ż, ϕ, θ, ψ, p, q, r, ]⊤ (position, linear velocity,
orientation, angular velocity) are reachable.

To prove this, we first consider the concatenation of
individual thrust vectors t =

[
t1 t2 t3 t4

]⊤ ∈ R12

as the virtual control input. Intuitively, we can always find
values of actual control inputs αi, βi and Ωi that result
in any individual thrust vector ti, given that rotor speed
Ωi goes sufficiently high. We can then find that the force-
torque vector [f , τ ]⊤ ∈ R6 can be mapped from the virtual
control input t ∈ R12 through a linear mapping function
M : R12 → R6. We then show that this has infinite solutions,
implying that all forces and torques are possible, and hence
all the states are reachable.

Corollary 1 (Controllability). Since the solution for the
linear map M always exists, we can always find a set
of thrust vectors t⃗i, such that a desired force and torque
is applied. Mathematically, given vectors f and τ there
exists t =

[
t1 t2 t3 t4

]⊤
such that f =

∑4
i=1 ti, τ =∑4

i=1 li × ti. Hence, the system is controllable as all force
and torque realizations are possible.

Accounting for rotor speed limits, we get a range of
feasible force and torque values under the individual thrust
saturation assumption. Figure 4 shows the possible force and
torque vector envelope. The force envelope assumes that the
commanded torque is zero and vice versa. We see that the
force limits are uniform in all directions, while the torque
limits have a minimum-to-maximum limit ratio of roughly
0.5. Particularly, the uniform force reachability across all
directions holds a significant advantage over existing state-
of-the-art designs such as the VoliroX hexacopter [14], [17],
[18], where the force envelope is non-uniform.

Remark 1 (Gimbal Lock). We emphasize that our quadrotor
design has capability to exert force and torque, that is,
wrench in any given direction. While this is true in any static
state, the controllability is constrained in certain directions,
when the angle β = ±π/2 due to the presence of gimbal
lock. This aspect is one of the inherent limitations of the
design choice where each arm has a pair of orthogonally
placed servo motors (angles αi and βi). The quadrotor has
the control authority to command the angular velocity Ωi
along kPi

axis, and angles αi, βi along jB and iPi
axes

respectively, as seen in Figure 3. When βi = ±π/2 i.e.,
desired force fd is along jB, we see that axes kPi

and
jB align with each other. This is why we lose the control
authority along yaw axis kB as we cannot command any
thrust in iB−jB plane (only in jB direction). We can resolve
this issue by introducing a differential thrust controller for
yaw angle. During the configuration of the gimbal lock,



we can appropriately create a differential in thrust vector
magnitudes along jB axis to exert a moment along kB
axis. In practice, we will implement this as a hybrid control
strategy when βi ≈ ±π/2.

III. GEOMETRIC CONTROL

We present a generalized geometric controller for the mor-
phable quadrotor to track desired positions and orientations.
The controller aims to calculate the desired force and torque
commands in 6-DOF, based on the tracking error in position
and orientation. In contrast to the geometric controller of a
regular quadrotor [16], the generalized geometric controller
of the morphable quadrotor obtains completely decoupled
forces and torques that can be calculated independently. This
superiority is due to the six-dimensional force and torque
reachability presented in Section II.

We first define tracking errors as

ep = p− pd, eR =
1

2

(
R⊤
d R−R⊤Rd

)∨
,

ev = v − vd, eω = ω −R⊤Rdωd;
(7)

pd, vd, Rd, ωd are desired position, velocity, rotation matrix,
and angular velocity, and ∨ : SO(3) → R3 is the vee map.

The generalized geometric controller calculates the desired
force and torque as

fd = −R⊤(−kpep − kvev −mg +mad),

τd = −kReR − kωeω + ω × Jω

− Jω ×R⊤Rdωd −R⊤Rdω̇d,

(8)

where ad, ω̇d are desired acceleration and angular accelera-
tion, kp, kv , kR, and kω are positive PD control gains.

Substitute the desired force and moment in eq. (8) to
quadrotor dynamics in eq. (1) and eq. (3) gives the corre-
sponding closed loop system dynamics

ėp = ev,

ėv =
1

m
(−kpep − kvev) ,

ėR =
1

2

(
tr
(
R⊤Rd

)
I −R⊤Rd

)
eω,

J ėω = −kReR − kωeω.

(9)

Proposition 2 (Exponential Stability Almost Everywhere in
SO(3)). Consider the controller defined in eq. (8). Suppose
that the initial conditions satisfy

Ψ(R(0),Rd(0)) < 2,

∥eω(0)∥2 <
2kR

λmax(J )
(2−Ψ(R(0),Rd(0))) ,

(10)

where a real-valued error function Ψ(·, ·) : SO(3) ×
SO(3) → R is defined as Ψ(R,Rd) ≜ 1

2 tr
(
I −R⊤

d R
)
.

Then, the origin of the closed-loop error dynamics in eq. (9)
is exponentially stable.

We obtain exponential stability of the generalized geo-
metric controller for almost every pair of (R(0),Rd(0)) .
Specifically, Proposition 2 holds for Ψ(R(0),Rd(0)) < 2,
which indicates the initial attitude error between R(0) and

Rd(0) should be less than 180◦. In other words, we prove
that the closed-loop controller is exponentially stable in
almost entire SO(3). This result improves the exponential
stability of the geometric controller of a regular quadrotor,
which requires initial attitude error between R(0) and Rd(0)
should be less than 90◦ [16].

IV. CONTROL ALLOCATION

We describe how we compute the low-level actuator
commands αi, βi and Ωi from desired force and torque com-
mands computed from the generalized geometric controller.
We present the inverse mapping of the dynamics given in
eq. (6) which is an under-determined system due to the over-
actuated design of the quadrotor. Since this inverse mapping
had infinite solutions, the proposed control allocation is prov-
ably energy optimal. Hence, our control allocation is energy
optimal resulting in minimum thrust cancellations among the
rotor arms. As described further, we provide an intuitive and
computationally simple allocation scheme where the thrust
vector for each arm consists of independent components for
force, roll, pitch, and yaw commands. Note that, since each
arm has vectored-thrust in any direction based on αi and
βi. Using this, we can apply the maximum possible thrust
uniformly in all directions, as seen in Figure 4.

The desired force-torque vectors, fd and τd, are computed
using the geometric control law (eq. (8)). The low-level
commands αi, βi, and Ωi are decoupled with the values
for the other arm, hence the resulting thrust vector ti can
be considered an (intermediate) virtual control input. Note
that the magnitude ∥ti∥ depends on the angular velocity
of the propeller Ωi and direction t̂i is determined by the
values of servo motor angles αi and βi. Then we break down
the desired force and torque into four components, i.e., net
force, roll, pitch and yaw. Each component is equally (in
magnitude) distributed to all four arms/propellers such that
it does not affect the other component. Mathematically, each
thrust vector ti is a vector sum of its contribution towards
net force, roll, pitch and yaw, given by

t1 =
fd
4

+

(
τx,d
4ly

)
kB +

(
−τy,d
4lx

)
kB +

(τz,d
4r

)
t̂ψ1 ,

t2 =
fd
4

+

(
−τx,d
4ly

)
kB +

(
−τy,d
4lx

)
kB +

(τz,d
4r

)
t̂ψ2 ,

t3 =
fd
4

+

(
−τx,d
4ly

)
kB +

(
τy,d
4lx

)
kB +

(τz,d
4r

)
t̂ψ3 ,

t4 =
fd
4

+

(
τx,d
4ly

)
kB +

(
τy,d
4lx

)
kB +

(τz,d
4r

)
t̂ψ4 ,

(11)
where the values lx, ly , and r =

√
l2x + l2y are the half-length,

half-breadth and distance from CoM of each propeller. This
relation can be represented as a linear map N : [fd, τd]

⊤ ∈
R6 → t ∈ R12. The vectors t̂ψi are the unit vectors along
the yaw directions, in iB − jB plane, as shown in Figure 5.
Mathematically, these are given by

t̂ψ1
=

[
−ly
r

lx
r 0

]⊤
, t̂ψ2

=
[
ly
r

lx
r 0

]⊤
,

t̂ψ3
=

[
ly
r

−lx
r 0

]⊤
, t̂ψ4

=
[
−ly
r

−lx
r 0

]⊤
.

(12)



Fig. 5: Unit vectors in iB − jB for yaw control.

Finally, from the value of each thrust vector ti, we can
now find the values of αi, βi and Ωi. Based on the rotation
matrix RPi/B(αi, βi) = RjPi

(αi)RiPi
(βi), we have ti as

ti = ctΩ
2
i

[
sinαi cosβi − sinβi cosαi cosβi

]⊤
. (13)

We can obtain multiple solutions (αi, βi values) for this
equation. Due to angle wrapping for inverse trigonometric
functions, by design, we define:

Ωi =
√

||ti||/ct, βi = − sin−1
(
t̂i,y

)
, (14)

αi =



π − sin−1
(

t̂i,x
cos βi

)
∈ (π/2, π)

if ti,z < 0 and ti,x ≥ 0,

−π − sin−1
(

t̂i,x
cos βi

)
∈ (−π,−π/2)

if ti,z < 0 and ti,x < 0,

sin−1
(

t̂i,x
cos βi

)
∈ [−π/2, π/2]

otherwise.
(15)

We can show that this control allocation design is optimal
in the sense of sum-of-squares of the energy consumption
(where energy is assumed to be proportional to Ω2

i ).

Proposition 3 (Energy-efficient Control Allocation). The
control allocation given by eq. (11) to find thrusts
t1, t2, t3, t4, for given fd and τd, is the optimal solution
with respect to the cost function E(ti) =

1
2

∑4
i=1∥ti∥2.

This can be shown by solving the optimization for min-
imizing the above cost function subject to the constraints
f =

∑4
i=1 ti, τ =

∑4
i=1 li × ti. Lagrangian multiplier

method can be used to show that the proposed inverse
mapping (eq. (11)) is the solution. Alternatively, we can show
that the linear (inverse) map N : [fd, τd]

⊤ ∈ R6 → t ∈ R12

is pseudo-inverse of forward dynamics mapping M : t ∈
R12 → [f , τ ]⊤ ∈ R6, i.e., N =M† =MT

(
MMT

)−1
. We

know that this gives a minimum-norm squared solution for
the under-determined system with infinite solutions.

V. SIMULATION EXPERIMENTS

In this section, we present the experimental results demon-
strating the proposed quadrotor design and the corresponding
controller’s performance in inspection-inspired applications.

A. Continuous Contact-based Inspection
For the first experiment, we highlight a potential ap-

plication of our drone design for contact-based inspection
tasks. Figure 6 demonstrates our vehicle’s ability to orient
an attached tool in arbitrary directions with precision. In this
experiment, we affix a black tool to the vehicle and trace a
controlled trajectory along the surface of a water tower. As
the vehicle ascends, it dynamically pitches to maintain proper
tool alignment. Upon reaching the top, it transitions into a
descent by yawing about its body z-axis while continuously
keeping the tool in contact with the surface. This controlled
interaction illustrates the system’s dexterity and ability to
maintain precise tool orientation, expanding the range of
tasks achievable with aerial robots beyond what is possible
with conventional multirotors.

Fig. 6: Our quadrotor following a continuous-contact trajec-
tory on a simulated water tower. During ascent (blue) and
descent (red), it dynamically orients its fixed tool (black rod)
to be normal to the structure.

Figure 7 and Figure 8 demonstrate our controller’s ef-
fectiveness in tracking position and orientation during the
maneuver. As shown in Figure 7, the quadrotor’s ground
truth position precisely tracks the commanded position of the
trajectory. Additionally, Figure 8 indicates that throughout
the entire maneuver, the orientation error never surpasses
0.0035 radians.

Fig. 7: Translational trajectories for commanded water tower
trajectory. The vehicle position (blue dashed) closely follows
the commanded position (orange solid).



Fig. 8: Orientation error, Ψ(R,Rd), for commanded water
tower trajectory.

B. Flying in Constrained Spaces

Next, we demonstrate our quadrotor’s ability to follow 6-
DoF trajectories in constrained spaces. Figure 9 highlights
how the enhanced maneuverability of our quadrotor enables
it to navigate successfully through a narrow pipe structure.
The vertical section of the pipe imposes strict spatial con-
straints, limiting the feasible orientations that the quadrotor
can achieve without collision. Our system’s adaptability
enables it to traverse these tight spaces.

(a)

(b)
Fig. 9: (a) The morphable quadrotor tracking a trajectory
inside a constrained conduit and (b) first-person-view inspec-
tion images from a body-mounted camera.

C. Continuous Visual Inspection

Finally, to showcase the system’s 6-DoF trajectory-
following capabilities, we design an experiment in which the
quadcopter follows a corkscrew trajectory while continuously
keeping a fixed camera aimed at a central object. Unlike
current multirotors, which are limited in their ability to
maintain precise viewpoint control during complex maneu-
vers, our system leverages its extended maneuverability to
smoothly follow the trajectory while ensuring the target
remains consistently framed. Figure 10 presents both a third-
person perspective of the trajectory and a corresponding first-
person view from the body-fixed camera.

(a)

(b)
Fig. 10: (a) The morphable quadrotor tracking a corkscrew
trajectory (dotted blue line) around an object for 10 distinct
timesteps and (b) the corresponding first-person-view inspec-
tion images from a body-mounted camera. The red vector
represents the optical axis of the camera.

VI. CONCLUSION

We presented a novel variable-tilt quadrotor and ac-
companying control pipeline that achieves high levels of
maneuverability and hand-like dexterity. By independently
actuating each rotor’s orientation, our vehicle enables op-
timally energy-efficient 6-DoF control of position and ori-
entation, enabling the vehicle to stably achieve almost any
configuration in SO(3). We demonstrate applications of this
quadrotor in simulations: (i) maintaining continuous contact
with surfaces during flight, (ii) flying in constrained spaces,
and (iii) continuous vision-based inspection.

In future work, we plan to apply these algorithms in real-
world experiments. Progress has already been made in this
direction, including: (i) extending the algorithms herein to
the PX4 [19] software-in-the-loop flight stack, (ii) fabricating
the drone (Figure 11), and (iii) conducting preliminary flight
tests. For more information, please visit our project website.1

Fig. 11: Prototype of the morphable quadrotor.

1https://iral-morphable.github.io/
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